An Evolutionary Analysis of Lateral Gene Transfer in Thymidylate Synthase Enzymes
نویسندگان
چکیده
Thymidylate synthases (Thy) are key enzymes in the synthesis of deoxythymidylate, 1 of the 4 building blocks of DNA. As such, they are essential for all DNA-based forms of life and therefore implicated in the hypothesized transition from RNA genomes to DNA genomes. Two evolutionally unrelated Thy enzymes, ThyA and ThyX, are known to catalyze the same biochemical reaction. Both enzymes are sporadically distributed within each of the 3 domains of life in a pattern that suggests multiple nonhomologous lateral gene transfer (LGT) events. We present a phylogenetic analysis of the evolution of the 2 enzymes, aimed at unraveling their entangled evolutionary history and tracing their origin back to early life. A novel probabilistic evolutionary model was developed, which allowed us to compute the posterior probabilities and the posterior expectation of the number of LGT events. Simulation studies were performed to validate the model's ability to accurately detect LGT events, which have occurred throughout a large phylogeny. Applying the model to the Thy data revealed widespread nonhomologous LGT between and within all 3 domains of life. By reconstructing the ThyA and ThyX gene trees, the most likely donor of each LGT event was inferred. The role of viruses in LGT of Thy is finally discussed.
منابع مشابه
Genomic Distance between Thymidylate Synthase and Dihydrofolate Reductase Genes Does Not Correlate With Phylogenetic Evolution in Bacteria
Problem statement: Dihydrofolate Reductase (DHFR) and Thymidylate Synthase (TS) exist as bifunctional enzymes coded into unique polypeptide chain in protozoans. Bifunctional DHFRTS is associated with an increase in the enzymatic activity by channeling the substrate between the active sites. In some bacteria, DHFR and TS genes are neighbors in the genome, whereas in others, they are located mill...
متن کاملThe role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies.
Viruses are often considered as fragments of cellular RNA or DNA that escaped a long time ago from cellular chromosomes and that evolved later on by capturing additional genes from the genomes of their hosts. However, this view has now been challenged by the discovery of surprising homology between viruses with very distantly related hosts, and by phylogenetic analyses suggesting that genes mig...
متن کاملFlavin-Dependent Thymidylate Synthase as a Drug Target for Deadly Microbes: Mutational Study and a Strategy for Inhibitor Design.
The identification of flavin-dependent thymidylate synthase (FDTS) as an essential enzyme and its occurrence in several pathogenic microbes opens opportunities for using FDTS enzyme as an excellent target for new antimicrobial drug discovery. In contrast to the human thymidylate synthase enzyme that utilizes methylene-tetrahydrofolate (CH2H4 folate) for the conversion of dUMP to dTMP, the micro...
متن کاملFunctional analysis of FAD-dependent thymidylate synthase ThyX from Paramecium bursaria Chlorella virus-1.
Sequence analysis of the 330-kb double-stranded DNA genome of Paramecium bursaria chlorella virus-1 revealed an open reading frame A674R that encodes a protein with up to 53% amino acid identity to a recently discovered new class of thymidylate synthases, called ThyX. Unlike the traditional thymidylate synthase, ThyA, that uses methylenetetrahydrofolate (CH(2)H(4)folate) as both a source of the...
متن کاملInhibition of Leishmania major PTR1 Gene Expression by Antisense in Escherichia coli
BACKGROUND Protozoa related to Trypanosome family including Leishmania, synthesize enzymes to escape from drug therapy. One of them is PTR1 that its enzymatic activity is similar to dihydrofolate reductase (DHFR). Dihydrofolate reductase - thymidylate synthase has a major role in DNA synthesis, if it is inhibited, the result would be the death of parasite. Since PTR1 activity is similar to DHFR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 59 شماره
صفحات -
تاریخ انتشار 2010